Thesis Applying Two Binned Methods to the Simple Biosphere Model (sib) for Improving the Representation of Spatially Varying Precipitation and Soil Wetness

نویسندگان

  • Isaac D. Medina
  • Scott Denning
  • David A. Randal
  • Jorge A. Ramirez
  • A. Scott Denning
  • Ian T. Baker
چکیده

Representing subgrid-scale variability is a continuing challenge for modelers, but is crucial for accurately calculating the exchanges of energy, moisture, and momentum between the land surface and atmospheric boundary layer. Soil wetness is highly spatially variable and difficult to resolve at grid length scales (~100 km) used in General Circulation Models (GCMs). Currently, GCMs use an area average precipitation rate that results in a single soil wetness value for the entire grid area, and due to the highly nonlinear relationship between soil wetness and evapotranspiration, significant inaccuracies arise in the calculation of the grid area latent heat flux. Using a finer GCM resolution will not solve this problem completely and other methods of modeling need to be considered. For this study, the binned and alternative binned method of Sellers et al. (2007) are applied to the Simple Biosphere Model (SiB) for improving the representation of spatially varying precipitation, soil wetness and surface-atmosphere fluxes. The methods are tested in a dry, semi-arid, and wet biome for two off-line precipitation distribution experiments, and results are compared to an explicit method, which is ideal for resolving subgrid-scale variability, and the bulk method (area averaged), which is currently in use with GCMs. Results indicate that the alternative binned method better captures the spatial variability in soil wetness and grid area flux calculations produced by the explicit method, and deals realistically with spatially varying precipitation at little additional computational cost to the bulk method. iii ACKNOWLEDGEMENTS I would like to acknowledge and greatly thank the following people who have made the completion of my thesis possible: I thank my advisor, Dr. A. Scott Denning, for the opportunity to work with the best scientists in our field at CMMAP. I also thank my committee members, Dr. David A. Randal and Dr. Jorge A. Ramirez, for their interest in my research. I also express my gratitude to Dr. Ian T. Baker for all of his scientific insight and mentoring, and the Biocycle Group for all of their support and encouragement. Finally, I am grateful for the support and understanding from my family and friends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A sampling method for improving the representation of spatially varying precipitation and soil moisture using the Simple Biosphere Model

[1] Representing spatially varying precipitation for current grid length scales used in General Circulation Models (GCMs) is a continuing challenge. Furthermore, to fully capture the hydrologic effects of nonuniform precipitation, a representation of soil moisture heterogeneity and distribution of spatially varying precipitation must exist within the same framework. For this study, the explicit...

متن کامل

Climate variability in a simple model of warm climate land-atmosphere interaction

[1] A simple model is developed to describe the significant land-atmosphere interaction processes in the warm climate. It includes bulk soil hydrology, dynamic vegetation, and simple land-atmosphere interaction processes. The model can simulate the basic features of land surface control on evapotranspiration (ET) and exhibits a multiequilibrium behavior similar to that of some more complex mode...

متن کامل

Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land-atmosphere carbon exchanges from croplands

Croplands are man-made ecosystems that have high net primary productivity during the growing season of crops, thus impacting carbon and other exchanges with the atmosphere. These exchanges play a major role in nutrient cycling and climate change related issues. An accurate representation of crop phenology and physiology is important in land-atmosphere carbon models being used to predict these e...

متن کامل

Two-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity

The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...

متن کامل

Two-Dimensional Solute Transport with Exponential Initial Concentration Distribution and Varying Flow Velocity

The transport mechanism of contaminated groundwater has been a problematic issue for many decades, mainly due to the bad impact of the contaminants on the quality of the groundwater system. In this paper, the exact solution of two-dimensional advection-dispersion equation (ADE) is derived for a semi-infinite porous media with spatially dependent initial and uniform/flux boundary conditions. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011